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Abstract
The purpose of the present paper is to study the

statistics and scalings of the fluctuations of thermody-
namic quantities (pressure, density, temperature and
entropy) in compressible wall-turbulence. Data were
extracted from severalDNS simulations of compress-
ible turbulent channel flow (Reτw

∈ [100, 500] and
M̄CL ∈ [0.3, 2.5]). We study 1-point and 2-point statis-
tics, 1-point transport equations budgets, 2-time corre-
lations and frequency-spectra. The appropriate scal-
ings are discussed. Results with different resolutions
and/or computational box sizes are compared and an-
alyzed to draw guidelines on resolution requirements
for theDNS of compressible wall-turbulence.

1 Introduction

Density-fluctuations are a direct measure of compress-
ibility effects on turbulence (Taulbee and VanOsdol,
1991), and diffrentiate weakly compressible turbulent
flows (Rubinstein and Erlebacher, 1997), where their
relative importance is small, from flows with strong
compressibility effects (Wu and Martı́n, 2007). An up-
to-date review ofDNS work on compressible turbulent
flows was given by Friedrich (2007).

To understand the dynamics of density fluctua-
tions in compressible wall-turbulence, it is necessary
to study the dynamics of the fluctuations of different
thermodynamics variables and their interaction. For
general thermodynamic relationsp = p(ρ, T ) and
cp = cp(ρ, T ), the following relations hold between
thermodynamic variables (Gerolymos et al., 2008)

dp =a2dρ + λGρTds (1a)

ρcpdT =ρTds + βpTdp (1b)

ρcpdT =(1 + λGβpT )ρTds + βpTa2dρ (1c)

wherea is the speed-of-sound,cp is the heat capacity
at constant pressure,βp is the coefficient of thermal ex-
pansion (at constant pressure), andλG is the Grüneisen
(Arp et al., 1984) parameter (expressible as a functions

of the other 3 thermodynamic parameters)

a2 =
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The well-known continuity and entropy production
equations

∂ρ

∂t
+

∂

∂xℓ

[ρuℓ] = 0 (3a)

ρT
Ds

Dt
= τmℓSmℓ −

∂qℓ

∂xℓ

(3b)

can be combined using these thermodynamic relations
(1) to give

Dp

Dt
= − ρa2 ∂uℓ
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+ λG

(
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(
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∂xℓ
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(3e)

The above equations (3) are valid for general thermo-
dynamic relationsp = p(ρ, T ) and cp = cp(ρ, T ).
Notice that the volume forcesfVi

present in the mo-
mentum equation, do not appear explicitly in the trans-
port equations for the static thermodynamic variables
ρ (3a),s (3b),p (3c),T (3d), orh (3e).

What appears clearly in (3) is that the transport of
p, T or h is equal to the sum of a velocity-divergence-
term (compressible, always scaling witha2) and an
entropy-production-term.

These equations can be easily manipulated to ob-
tain transport equations for the variances of the static
thermodynamic quantities (Gerolymos et al., 2007a,b,
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2008). These were studied in previous work (Geroly-
mos et al., 2007a,b, 2008) for a limited range ofReτw

andM̄CL. In the present work we extend this database
and include time-series analysis.

2 DNS Database

The DNS data (Fig. 1) were generated by a finite-
volume DNS solver (Gerolymos et al., 2009b) us-
ing an O(∆x17) upwind-biased scheme (Gerolymos
et al., 2009c). The method has been extensively val-
idated by comparison of statistics and spectra with
available compressible and incompressible pseudo-
spectralDNS data (Gerolymos et al., 2009b). The
solver is part of an open source project (Geroly-
mos and Vallet, 2009) and can be downloaded at
http://sourceforge.net/projects/aerodynamics/.

3 Statistics and Scalings

Statistics (1-point and 2-point) were obtained for var-
ious Reτw

∈ [100, 600] and M̄CL ∈ [0.3, 2.5] (al-
though the simulations forReτw

≅ 500 are not well
resolved). All of the basic 1-point statistics are well-
converged (Fig. 1). The sampling frequency for the
1-point statistics was∆t−1 (sampling at every time-
step) and for the 2-point statistics, from which spec-
tra were computed, was1100∆t−1 (sampling every 100
time-steps).
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Reτw
M̄cl Nx × Ny × Nz Lx Ly Lz ∆x+ ∆y+

w Ny+≤10 ∆y+
cl

∆z+ ∆t+ t+
obs

227 1.50 345 × 137 × 529 8πδ 2δ 4πδ 16.6 0.23 19 5.6 5.4 16.6 × 10−3 1001
100 1.64 137 × 113 × 201 8πδ 2δ 4πδ 18.5 0.17 22 3.1 6.2 11.7 × 10−3 3235
550 1.49 177 × 137 × 265 8πδ 2δ 4πδ 78.0 0.24 17 14.4 26.0 22.7 × 10−3 2734
475 2.42 177 × 137 × 265 8πδ 2δ 4πδ 76.3 0.24 17 14.0 25.4 10.8 × 10−3 1251
169 1.51 257 × 129 × 385 8πδ 2δ 4πδ 16.6 0.21 21 4.7 5.5 15.0 × 10−3 1373
180 0.34 257 × 129 × 385 8πδ 2δ 4πδ 17.6 0.23 20 5.0 5.8 6.5 × 10−3 592

y+ - y+ -

Figure 1: Comparison of computed turbulence statistics (van

Driest-transformed velocitȳu+
VD , u′′, ρu′′

i u′′

j ) from
presentDNS computations using theUW17–C02
schemes, for variousReτw ∈ [100, 600] and
M̄CL ∈ [0.3, 2.5] (isothermal walls).

The relative fluctuation level of the thermodynamic
quantities,ρ′rmsρ̄

−1, T ′
rmsT̄

−1 andp′rmsp̄
−1, scale rea-

sonably well (Fig. 2), at fixedReτw
, with the square of

the centerline Mach-number̄M2
CL. There is of course

a Reτw
influence, at fixedM̄CL, the fluctuation level

increasing withReτw
(Fig. 2). The scaling seems

less satisfactory for theReτw
∈ [450, 550] simula-

tions, but this is attributed to the fact that these sim-
ulations are not fully converged (a part of the observa-
tion time tOBS across which the statistics were taken,
included transient evolution of the simulation; statis-
tics must be restarted) and that they were run on rather
coarse grids (Fig. 2). Close examination of the peaks
of the relative fluctuation levels ofρ′ andT ′, located at
y+

∈ [8, 15] (Fig. 2), indicates that their precise loca-
tion moves further away from the wall (in wall units)
asMCL increases, but is quite insensitive toReτw

.
It is well known, since the early work of Cole-

man et al.(Coleman et al., 1995; Huang et al., 1995),
that the combined influence ofReτw

andM̄CL on the
Reynolds-stresses is more intracate (Fig. 1), especially
for ρu′′v′′, because of the variation ofµ with T .
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M̄cl Nx × Ny × Nz Lx Ly Lz ∆x+ ∆y+

w Ny+≤10 ∆y+
cl

∆z+ ∆t+ t+
obs

227 1.50 345 × 137 × 529 8πδ 2δ 4πδ 16.6 0.23 19 5.6 5.4 16.6 × 10−3 1001
100 1.64 137 × 113 × 201 8πδ 2δ 4πδ 18.5 0.17 22 3.1 6.2 11.7 × 10−3 3235
550 1.49 177 × 137 × 265 8πδ 2δ 4πδ 78.0 0.24 17 14.4 26.0 22.7 × 10−3 2734
475 2.42 177 × 137 × 265 8πδ 2δ 4πδ 76.3 0.24 17 14.0 25.4 10.8 × 10−3 1251
169 1.51 257 × 129 × 385 8πδ 2δ 4πδ 16.6 0.21 21 4.7 5.5 15.0 × 10−3 1373
180 0.34 257 × 129 × 385 8πδ 2δ 4πδ 17.6 0.23 20 5.0 5.8 6.5 × 10−3 592

y
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Figure 2: Scaling of temperature fluctuations for various
Reτw ∈ [100, 600] andM̄CL ∈ [0.3, 2.5] (isother-
mal walls).

4 Resolution and Box-size

Consideration of 1-D spectra in the homogeneousx−

(Fig. 3) andz− (Fig. 4) directions highlights the res-
olution of the computations, while the analysis cor-
responding 2-point correlations, in homogeneousx−

(Fig. 5) andz− (Fig. 6) directions, determines conver-
gence of the statistics and box-size effects.
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Figure 3: Computed 1-D spectra ([E
(x)
uu ]+, [E

(x)
vv ]+,

[E
(x)
ww ]+, [E

(x)
ρρ ]+, [E

(x)
TT ]+, and [E

(x)
pp ]+) at

y+ = 10.6, for variousReτw ∈ [100, 600] and
M̄CL ∈ [0.3, 2.5] (isothermal walls).
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Figure 4: Computed 1-D spectra ([E
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Figure 5: Computed 1-D 2-point correlation coefficients
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Figure 6: Computed 1-D 2-point correlation coefficients
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Obviously, the preliminary coarse gridReτw
≅

500 computations are not well resolved (Figs. 3, 4),
although theM̄CL = 2.42 simulation is better resolved
than theM̄CL = 1.50 one, since thēMCL increase shifts
the spectra towards lower wavenumbers (Figs. 3, 4).
A more important observation is that the logarithmic
slope (exponent) ofEρρ (andETT ) is strongly depen-
dent onM̄CL, in contrast to the velocity (Euu, Evv ,
Eww) and pressure (Epp) spectra whose slope in the
inertial range seems relatively independent ofM̄CL. As
a result, the energy level separation forEρρ between
the large and the smallest resolved scales, on a given
grid, decreases with decreasinḡMCL much faster that
the energy level separation forEuiui

. Notice that, for
M̄CL ≅ 0.35, the energy level separation between the
large scales and the smallest grid resolved scales, is
similar forEpp, ETT andEρρ. As a result, although as
demonstrated by extensive comparisons with incom-
pressibleDNS data (Gerolymos et al., 2009b), the grid
used for the (Reτw

, M̄CL)≅(180,0.35) computations is
quite satisfactory for the prediction of velocity spec-
tra, it is insufficient for examining in detail the den-
sity fluctuations (in particular the destruction ofρ′2

which occurs at the small scales). On the contrary the
(Reτw

, M̄CL)≅(227,1.5) simulations are well resolved
both for velocities and for thermodynamic quantities.

Consideration of 2-point correlation coefficients
(Figs. 5, 6) highlights the well known effect of increase
of correlation lengths (outer scaling) with decreasing
Reτw

, suggesting the need of larger box size for the
Reτw

≅ 100 simulations. The unsatisfactory (high-
level) correlation coefficientCpp for theReτw

≅ 500
simulations (Figs. 5, 6) is attributed to the presence of
transients in these simulations (statistics were restarted
to exclude this transient).

5 Density variance and massflux

The transport equations for the density varianceρ′2 (4)
and for the massflux̄ρu′′

i = −ρ′u′′
i (5) were given by

Taulbee and VanOsdol (1991).

∂ρ′2

∂t
+ ũℓ

∂ρ′2

∂xℓ
︸ ︷︷ ︸

convectionC(ρ′)

=
∂

(

−ρ′2u′′
ℓ

)

∂xℓ
︸ ︷︷ ︸

diffusiond(ρ′)

−2ρ′u′
ℓ

∂ρ̄

∂xℓ

− 2ρ′2
∂ũℓ

∂xℓ
︸ ︷︷ ︸

productionP(ρ′) := P(ρ′;∇ρ̄) + P(ρ′;Θ̆)

−

[

(ρ2 − ρ̄2)
∂u′′

ℓ

∂xℓ

]

︸ ︷︷ ︸

destructionε(ρ′)

= 0 (4)

∂

∂xℓ

(ρ′u′′
i u′′

ℓ )

︸ ︷︷ ︸

I

−ρ̄
∂ũi

∂xℓ
︸ ︷︷ ︸

II

+u′′
i u′′

ℓ

∂ρ̄

∂xℓ
︸ ︷︷ ︸

III

+ρ̄u′′
i

∂u′′
ℓ

∂xℓ
︸ ︷︷ ︸

IV

−

(
ρ̄

ρ
− 1

)
∂p

∂xi
︸ ︷︷ ︸

V

+

(
ρ̄

ρ
− 1

)
∂τiℓ

∂xℓ
︸ ︷︷ ︸

VI

+ρ̄f ′′
Vi

︸ ︷︷ ︸

VII

= 0 (5)

Surprisingly little work has been reported on extract-
ing information fromDNS computations on these basic
transport equations of compressible turbulence. We
have recently studied the budgets (Gerolymos et al.,
2007a) and sketched some initial attempts for thea
priori modeling (Gerolymos et al., 2008) of theρ′2

transport equation (4).
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Figure 7: Budgets of the transport equations for the density

varianceρ′2 (4), and for the streamwise massflux
u′′ (5), in wall units, from presentDNS computa-
tions using theUW17–C02 scheme (Reτw = 227,
M̄CL = 1.5, isothermal walls), on347×137×529
grid.

We consider also in the present work, budgets
(Fig. 7) of the streamwise massfluxu′′

i transport equa-
tion (5). It appears from these budgets that the fluc-
tuating velocity-dilataion correlation termIV in (5) is
a destruction term in the plane channel flow consid-
ered in the present work, even more important than
the termVI in (5) which contains together viscous dif-
fusion and destruction through viscosity effects. The
fluctuating specific-volume/pressure-gradient correla-
tion termV in (5) does not seem important for the flow
considered.

6 Time-Series and 2-time Corre-
lations

We have extracted time-series of the 5 primitive vari-
ables at 6y+ = cost locations (including the walls
y+ = 0 and the symmetry-planey+ = Re + τw), for
every other point in thex and z directions (Fig. 8).
Sampling frequency wasfs = ∆t−1. Results are be-
ing processed to obtain frequency spectra and 2-time
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correlations. As an example we present very prelim-
inary results with theUW17 scheme on the129 ×

129 × 129 grid using the e0DTSBDF2, e0DTSBDF3

and e0DTSBDF4, and theRK4 time-integration meth-
ods (Gerolymos et al., 2009a). The observation times
that were processed are rather short, but sufficient to
show the similarity of the results between the meth-
ods, but also the basic trends in the results. We con-
sider (Fig. 9) 2-time correlations(t)Ruiuj

(~x, t, rt) :=

u′
i(~x, t)u′

j(~x, t + rt), and corresponding frequency-
spectra. The 2-time-correlations were obtained by av-
eraging of 48 spatial points (the database on each plane
for this grid contains 2048 spatial points, but only 48
were used for these preliminary results. The obser-
vation time seems adequate for(t)Rvv and (t)Rww,
but not for (t)Ruu (Fig. 9). This explains why there
is more noise in the frequency-spectra(t)Euu, while
(t)Rvv and(t)Rww are much smoother. What is impor-
tant is that the results with all of the 4 methods are very
similar, including these temporal data. The frequency-
spectra obtained are in very good agreement with the
experimental spectra of Fernholz et al. (Fernholz et al.,
1995) (obtained at much highery+ andReθ). It seems
that time-integration is not as crucial to the quality of
the results as the spatial discretization of the convec-
tive terms.
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Figure 8: Typical time-series ofu+, v+, w+, ρ+, T+, and
p+, at a point located aty+ = 10.6, from present
DNS computations using theUW17–C02 scheme
and theRK4 time-integration method (Reτw =
180, M̄CL = 0.35, isothermal walls), on129 ×

129 × 129 grid.

7 Conclusions and Perspectives

Grid resolution requirements inDNS simulations of
compressible wall-turbulence are more strigent than
those necessary for studying velocity fluctuations,
especially asM̄CL decreases approaching the very
weakly compressible turbulence limit. For̄MCL ≅

1.5 and Reτw
∈ [180, 230] we have constructed a

well resolved database for the transport equations of
quantities related to the fluctuations of thermodynamic
quantities, and presented examples for the budgets of
density-variance and massflux.

We have also presented preliminary results for
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Figure 9: Comparison of computed 2-time correlations

and time-spectra ([E(t)
uu]+, [E

(t)
vv ]+, [E

(t)
ww ]+) at

y+ = 10.6, from presentDNS computations us-
ing the UW17–C02 scheme and the e0DTSBDF2,
e0DTSBDF3 and e0DTSBDF4, and theRK4 time-
integration methods (Reτw = 180, M̄CL = 0.35,
isothermal walls), on129 × 129 × 129 grid.

other values ofM̄CL and Reτw
, which are part

of an ongoing effort towards constructing a com-
pressible channel flowDNS database, with empha-
sis on the behaviour of thermodynamic quantities
(http://www.aerodynamics.fr) using an open source
DNS solver (Gerolymos and Vallet, 2009).
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GEROLYMOSG.A., SÉNÉCHAL D., VALLET I. (2007a) : Pressure,
Density and Temperature Fluctuations in Compressible Turbu-
lent Flow — I, AIAA Paper 2007–3408, 13. AIAA/CEAS Aeroa-
coustics Conference, 21–23 may 2007, Roma [ITA ].
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